Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor.

نویسندگان

  • Michael Groszmann
  • Ian K Greaves
  • Zayed I Albertyn
  • Graham N Scofield
  • William J Peacock
  • Elizabeth S Dennis
چکیده

Intraspecific hybrids between the Arabidopsis thaliana accessions C24 and Landsberg erecta have strong heterosis. The reciprocal hybrids show a decreased level of 24-nt small RNA (sRNA) relative to the parents with the decrease greatest for those loci where the parents had markedly different 24-nt sRNA levels. The genomic regions with reduced 24-nt sRNA levels were largely associated with genes and their flanking regions indicating a potential effect on gene expression. We identified several examples of genes with altered 24-nt sRNA levels that showed correlated changes in DNA methylation and expression levels. We suggest that such epigenetically generated differences in gene activity may contribute to hybrid vigor and that the epigenetic diversity between ecotypes provides increased allelic (epi-allelic) variability that could contribute to heterosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inheritance of Trans Chromosomal Methylation patterns from Arabidopsis F1 hybrids.

Hybridization in plants leads to transinteractions between the parental genomes and epigenomes that can result in changes to both 24 nt siRNA and cytosine methylation ((m)C) levels in the hybrid. In Arabidopsis the principle processes altering the hybrid methylome are Trans Chromosomal Methylation (TCM) and Trans Chromosomal deMethylation (TCdM) in which the (m)C pattern of a genomic segment at...

متن کامل

Role of DNA methylation in hybrid vigor in Arabidopsis thaliana.

Hybrid vigor or heterosis refers to the superior performance of F1 hybrid plants over their parents. Heterosis is particularly important in the production systems of major crops. Recent studies have suggested that epigenetic regulation such as DNA methylation is involved in heterosis, but the molecular mechanism of heterosis is still unclear. To address the epigenetic contribution to heterosis ...

متن کامل

Twenty-four-nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 Arabidopsis hybrids.

Hybrid Arabidopsis plants undergo epigenetic reprogramming producing decreased levels of 24-nt siRNAs and altered patterns of DNA methylation that can affect gene expression. Driving the changes in methylation are the processes trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). In TCM/TCdM the methylation state of one allele is altered to resemble the other allele. ...

متن کامل

The Inheritance Pattern of 24 nt siRNA Clusters in Arabidopsis Hybrids Is Influenced by Proximity to Transposable Elements

Hybrids often display increased size and growth, and thus are widely cultivated in agriculture and horticulture. Recent discoveries demonstrating the important regulatory roles of small RNAs have greatly improved our understanding of many basic biological questions, and could illuminate the molecular basis for the enhanced growth and size of hybrid plants. We profiled small RNAs by deep sequenc...

متن کامل

Repeat associated small RNAs vary among parents and following hybridization in maize.

Small RNAs (sRNAs) are hypothesized to contribute to hybrid vigor because they maintain genome integrity, contribute to genetic diversity, and control gene expression. We used Illumina sequencing to assess how sRNA populations vary between two maize inbred lines (B73 and Mo17) and their hybrid. We sampled sRNAs from the seedling shoot apex and the developing ear, two rapidly growing tissues tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 6  شماره 

صفحات  -

تاریخ انتشار 2011